Monocular Visual-Inertial SLAM: Continuous Preintegration and Reliable Initialization

نویسندگان

  • Yi Liu
  • Zhong Chen
  • Wenjuan Zheng
  • Hao Wang
  • Jianguo Liu
چکیده

In this paper, we propose a new visual-inertial Simultaneous Localization and Mapping (SLAM) algorithm. With the tightly coupled sensor fusion of a global shutter monocular camera and a low-cost Inertial Measurement Unit (IMU), this algorithm is able to achieve robust and real-time estimates of the sensor poses in unknown environment. To address the real-time visual-inertial fusion problem, we present a parallel framework with a novel IMU initialization method. Our algorithm also benefits from the novel IMU factor, the continuous preintegration method, the vision factor of directional error, the separability trick and the robust initialization criterion which can efficiently output reliable estimates in real-time on modern Central Processing Unit (CPU). Tremendous experiments also validate the proposed algorithm and prove it is comparable to the state-of-art method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate Monocular Visual-inertial SLAM using a Map-assisted EKF Approach

In this paper, we present a novel tightly-coupled monocular visual-inertial Simultaneous Localization and Mapping algorithm following an inertial assisted Kalman Filter and reusing the estimated 3D map. By leveraging an inertial assisted Kalman Filter, we achieve an efficient motion tracking bearing fast dynamic movement in the front-end. To enable place recognition and reduce the trajectory es...

متن کامل

Accurate Initial State Estimation in a Monocular Visual–Inertial SLAM System

The fusion of monocular visual and inertial cues has become popular in robotics, unmanned vehicles and augmented reality fields. Recent results have shown that optimization-based fusion strategies outperform filtering strategies. Robust state estimation is the core capability for optimization-based visual-inertial Simultaneous Localization and Mapping (SLAM) systems. As a result of the nonlinea...

متن کامل

Initialisation and Estimation Methods for Batch Optimisation of Inertial/Visual SLAM, Report no. LiTH-ISY-R-3065

Simultaneous Localisation and Mapping (SLAM) denotes the problem of jointly localizing a moving platform and mapping the environment. This work studies the SLAM problem using a combination of inertial sensors, measuring the platform’s accelerations and angular velocities, and a monocular camera observing the environment. We formulate the SLAM problem on a nonlinear least squares (NLS) batch for...

متن کامل

GSLAM: Initialization-robust Monocular Visual SLAM via Global Structure-from-Motion

Many monocular visual SLAM algorithms are derived from incremental structure-from-motion (SfM) methods. This work proposes a novel monocular SLAM method which integrates recent advances made in global SfM. In particular, we present two main contributions to visual SLAM. First, we solve the visual odometry problem by a novel rank1 matrix factorization technique which is more robust to the errors...

متن کامل

Asynchronous Adaptive Conditioning for Visual-Inertial SLAM

This paper is concerned with real-time monocular visual inertial simultaneous localization and mapping (VI-SLAM). In particular a tightly coupled nonlinear-optimization based solution that can match the global optimal result in real time is proposed. The methodology is motivated by the requirement to produce a scale-correct visual map, in an optimization framework that is able to incorporate re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017